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Abstract
Molecular dynamics simulations are applied to study the structural organ-
ization of a bead–monomer model of di-block polyampholyte. Di-block poly-
ampholyte is formed of two consecutive blocks of equal length, each containing
charges of one sign only. The ground state of the model studied has been found
to be a double-stranded helix. The folding (freezing) into the ground state is not
an all-or-none process but proceeds via an intermediate molten-globule phase.
In the intermediate phase, the molecule is subject to considerable structural
fluctuations and its size is small compared with both the high-temperature and
ground-state conformations. Also at the stage of the coil-to-globule transition
the twist of the native helix is fixed. In the globular state below the collapse
transition, the chain cannot change its twist spontaneously. By applying finite-
size analysis to the helicity distribution function at the freezing temperature we
find that the molten-globule–helix transition is of first order.

1. Introduction

Polyampholytes are polymers containing charged monomers of both signs as well as neutral
monomers. Despite providing an interesting problem of polymer physics in their own
right, polyampholytes owe much of the interest seen in recent years to the protein-folding
problem. This is because some of the protein amino acid residues can carry electric charges
at neutral pH conditions which places proteins into the class of polymers with long-range
(LR) interaction between monomers, i.e. polyampholytes. The work on polyampholytes to
date has focused on structural organization of these systems in dilute solutions. Depending
on whether a polyampholyte chain is neutral or bears a net electric charge, its conformations
at low temperatures can be either compact [1] or semicompact [2, 3]. Charged chains with
net electric charge not exceeding ∼e

√
N , where e is the electron charge and N is the number

of the chain’s monomers, are believed to behave like globally neutral chains, while for the
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systems with larger net charge, two conflicting theories have been presented: the elongated-
globule model [4] and the necklace model [5]. In a recent MC simulation the controversy
over the shape of collapsed charged polyampholytes was resolved in favour of the necklace
model [6]. The main findings of [6], which seems to contain the most extensive and reliable
simulation of polyampholyte chains to date, can be summarized as follows. Long enough
globally neutral polyampholyte chains collapse into maximally compact conformations with
Rg ∼ N1/3 at low temperatures in full accord with the theory of Higgs and Joanny [1], where
by Rg we denote the radius of gyration. Statistically neutral chains, i.e. an ensemble of non-
neutral quenched chains whose charge is drawn from a Gaussian distribution of zero mean,
are prevented from acquiring maximally compact states by charge fluctuations. Instead they
collapse into semicompact states with a larger gyration radius Rg ∼ N1/2. In this paper we
shall be concerned with the freezing in compact globules of neutral polyampholytes at low
temperatures.

The term ‘freezing’ [7] designates the transition of a polymeric chain from a state where
it spans over a large number of conformations O(eN) into the state where the chain statistics
is dominated by one (or a few) O(1) conformations. An outstanding example of a freezing
transition in polymers is the folding of a protein. Most attention in the studies of heteropolymer
freezing transitions has been devoted to polymers with short-range (SR) potentials between
monomers for which a number of theories [8–14], partly confirmed in computer simulations
[15–17], have been presented. In general, it is believed that the structural statistics of short-
range heteropolymers with random-sequence links is satisfactorily described by the random-
energy model (REM) [14]. When it comes to polymers with monomers interacting via long-
range potentials the situation is rather different, since the theories developed for the SR case do
not universally hold true in the LR case. The difficulties of the theoretical description of freezing
in polyampholytes were highlighted by Pande et al [11] who demonstrated that the REM is
not applicable in these systems. Another important aspect that sets apart collapses in the SR
and LR cases is the impact of the monomer sequence on the chain’s conformational statistics.
In polyampholytes, sequence specificity fully determines the conformation space accessible to
the system at all temperatures, in contrast to the case for SR polymers where the self-averaging
breaks down below the collapse transition only. Considering the difficulties faced by the
theoretical treatment of the freezing phenomenon in polyampholytes and the importance of
this phenomenon in the context of the protein-folding problem, molecular dynamics simulation
studies of the low-temperature conformation space of polyampholytes seem highly desirable.
Issues of particular interest in such studies are the sequence–structure relationships and the
exact mechanism of freezing, i.e. the way in which freezing proceeds. Does the freezing look
like an all-or-none process or does it go through an intermediate molten-globule phase [7,18]?
To shed light on the questions raised for a specific charged monomer sequence is the aim of the
present paper. We consider a polymeric chain consisting of two equal blocks of positively and
negatively charged monomers. This kind of polyampholyte—di-block polyampholyte—was
studied earlier by Imbert et al [19]. In a MC simulation of the bond-fluctuation model, the
authors found that the di-block polyampholyte undergoes a so-called zipping transition at a
sufficiently high temperature. The two oppositely charged parts of the chain zip together to
form a supercoil whose repeated units are formed by dipoles of opposite charges. It was also
found that the supercoil structure can be further compacted by a decrease of temperature, but the
details of the resultant low-temperature phase were not studied. Such a study was undertaken
later in a paper by Hiwatari and co-workers [20] for an off-lattice model of polyampholyte.
However, because of the problems encountered in bringing a rather long chain containing 60
monomers into proper thermal equilibrium, a detailed study of the frozen conformations of
di-block polyampholytes failed to emerge.
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In order to avoid the equilibration problem, in the present paper we study shorter chains
made up of 20, 30 and 40 monomers with the same off-lattice model as in reference [20].
In section 2 we give a short description of the physical model employed. It is important to
stress here that the polyampholyte studied is a purely theoretical model that has no immediate
prototype in polymeric materials. As stated above, our primary concern in studying this model
is the sequence–structure relationship in the presence of long-range interactions. In section 2
we also give the details of our computer simulations. Section 3 concerns the main results that
we obtained in this paper. We find that the ground state of short di-block polyampholytes
is a double-stranded helix conformation. On its folding path towards the ground state the
polyampholyte passes through an intermediate random-globule phase. The molten-globule
state is marked by a degree of similarity to the ground-state helix, but further setting in of order
is hampered by large-scale conformational fluctuations. Both transitions—from coil to random
globule and from random globule to helix—are observable in the specific heat at constant
volume Cv as separate maxima. In order to determine the nature of the freezing transition we
performed a finite-size scaling analysis of the critical helicity distribution function. According
to the Wilding and Bruce [21] criterion, the helix transition in di-block polyampholytes with
the model parameters adopted is of first order. This compares favourably with the theoretical
predictions [7]. In section 4 we summarize our work in concluding observations.

2. Model and computer simulations

To study low-temperature structural properties of di-block polyampholytes we considered a
bead model of polymer containing N monomers. Charged spherical beads interact via a soft-
core potential:

Usf (|�ri − �rj |) = 4ε

(
σ

|�ri − �rj |
)12

(1)

designed to provide for the excluded-volume effect. Here �ri denotes the position of monomer
i, while σ and ε are parameters characterizing the space scale and the strength of the soft-core
force. In order to avoid following relatively fast internal motions arising from strong covalent
forces, such as bond-length vibrations, distances between adjacent monomers of our model
were kept constant. The length of the covalent bonds was chosen to be σ . The charges on the
chain are arranged into two blocks with the same number of particles. One block containing
N/2 positively charged monomers is followed along the chain by the other block made up of
the same number of negatively charged monomers. The Coulomb potential acting between
the units is given by

Uc(|�ri − �rj |) = qiqj

|�ri − �rj | (2)

where we set the dielectric constant of the medium to 1 since we consider a single chain
in vacuum. The positively and negatively charged monomers were assigned charges e and
−e respectively. The other parameters involved in equation (1), namely σ = 3.4 au and
ε = 0.25 × 10−2 au, were adopted from reference [20].

For the above model we performed several molecular dynamics simulations with N = 20,
30 and 40. The choice of the number of simulated monomers was motivated by the following
considerations. It is well known that in polymer models (both lattice and off-lattice) the
presence of different types of conflicting interaction, such as attractive Coulomb forces and rigid
bond-length constraints, leads to the ubiquitous problem of multiple potential energy minima.
The potential energy surface of a constrained polymer possesses many local minima which
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act as kinetic traps in molecular dynamics simulations, thereby making proper thermalization
of the system problematic. Among the methods specifically designed to tackle the multiple-
minima problem, the multicanonical algorithm [22,23] is the most widely used. The strength
of the multicanonical scheme lies in the reduction of the barrier separating two free-energy
minima, which results in enhanced exploration of the conformation space. Another asset of
the multicanonical method is that it allows one to calculate various thermodynamic quantities
as functions of temperature from one simulation only. Obviously, this property is essential
in cases where an accurate location of phase transition temperatures is needed, in that it
can save a great deal of computational time. In reference [20] some of the present authors
applied the multicanonical molecular dynamics (MMD) method to the present polyampholyte
model containing 60 monomers. Unfortunately, the time needed to equilibrate the chain
in the transition temperature region turned out to be far beyond the capacity of currently
available computational facilities even in the multicanonical ensemble. The failure to explore
low-temperature conformations of the 60-monomer chain in [20] led us to consider shorter
di-block polyampholytes. Since the number of the potential energy minima of the chain grows
exponentially with the number of embedded particles, reducing the size of the system, besides
the obvious advantage of cutting down on the cost of one time integration step, also reduces
the molecule’s relaxation time. By experimenting with the number of chain monomers, we
found that N = 20 is the optimal value which allows reliable canonical and multicanonical
ensemble sampling within reasonable computational time. All of the results reported in this
paper have been obtained for the 20-monomer polyampholyte with a few exceptions following
later in the text, where 30 and 40 monomers were considered. For the 20-mer we performed
standard constant-temperature (NVT ) MD simulations at a range of temperatures covering the
transition point region. An additional MMD simulation was also performed for this system to
better locate the transition points and to check on the consistency of the canonical simulations.
Most of the NVT runs lasted over 20 × 106 time steps, which is large enough to account for
the slow fluctuations taking place at low temperatures. The main quantity of interest in this
study—the specific heat Cv—is a sufficiently smooth function of temperature for transition
points to be identifiable. The multicanonical simulation consisted of a preliminary NVT run
and five subsequent MMD iterations each 20 × 106 time steps long. The resulting potential
energy distribution function had a flat part consisting of the energy region of the observed
structural transitions. For more details on the integration algorithm used in this study, the
multicanonical recursive procedure and the bond-constraint method, we refer the reader to our
previous publication [20].

3. Results and discussion

In this section we report the results of our molecular dynamics simulations for the model
of di-block polyampholyte studied here. In figure 1 we present the specific heat at constant
volume Cv and the radius of gyration Rg generated by NVT and multicanonical simulations
as functions of temperature. In this figure and throughout the paper, temperature is given in
reduced units, σkbT /e2. The usual plasma coupling constant � is related to the temperature
as � = 1/T . In figure 1(a) the multicanonical specific heat was obtained from the canonical
energy distribution function P(E), reweighted according to the single-histogram method [24].
It is seen that the MMD reweighted data and the results of direct NVT simulations for Cv are
in very good agreement. At T > 0.5 the specific heat is a smooth slowly decreasing function
of temperature while at lower temperatures we find two distinct maxima at T1 = 0.032 and
T2 = 0.067, signalling structural transitions in the system. From the previous study on di-block
polyampholytes [19] it is known that this system has an unusual collapse scenario different



Helix transition in di-block polyampholyte 10283

0 1 2 3 4
T

4.5

5.0

5.5

6.0

6.5

R
g 

 (
a.

u.
)

NVT

0 0.1 0.2
0.5

1.5

MMD
NVT

0 0.5 1 1.5
0.0

0.5

1.0

1.5

2.0

C
v/

N
/k

b

0.1 0.2 0.3 0.4

T

5.0

5.4

5.8

(a)

(b)

Figure 1. The specific heat at constant volume Cv (a) and radius of gyration Rg (b) for the 20-
monomer di-block polyampholyte as obtained from canonical and multicanonical MD simulations.

from those for other charged copolymers, for example alternating polyampholytes [25]. At
quite a high temperature, which we estimate to be Tz ∼ 2.65 for the 20-mer considered,
the chain starts to bring its two oppositely charged halves together. This so-called zipping
transition leads at T < Tz to the formation of a supercoil structure—a polymer chain whose
repeated units are dipoles made up of pairs of one positive and one negative charge. Further
cooling of the system causes a collapse of the newly formed supercoil into a compact globule.
According to [19] this collapse takes place at T ∼ 0.07, which agrees very favourably with the
position of the second maximum of Cv of our model, T2. That the chain collapses at T ∼ T2

is also clear from the temperature evolution of Rg in figure 1(b). Starting from Rg ∼ 6 au
at T ∼ 2–3, the radius of gyration rapidly drops by about 20% to reach 5 au at T ∼ T2.
In the vicinity of the collapse transition, Rg stays constant for a while and then grows again
and reaches 5.4 au at the lowest temperature studied. The growth of the gyration radius at
temperatures near T1 is rather surprising since, obviously, one would expect a chain to shrink
upon cooling, not to expand. Upon visual inspection of the simulated model, we find that the
chain finds itself in double-stranded helix conformations at T < T1 as shown in figure 2. That
the double-stranded helix conformation is the ground state of the present model was verified
by a series of simulated annealing runs starting at T ∼ T1 from different initial configurations.
All the simulated annealing runs converged to the single structure shown in figure 2 when the
temperature was gradually decreased to T ∼ 0.
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Figure 2. The gross appearance of the double-stranded-helix ground-state conformation as found in
the MD simulations of di-block polyampholyte. Black balls represent positively charged monomers
and grey ones negatively charged monomers.

Having determined the ground state of the chain, the question of a quantitative description
of the freezing into this ground state arises, in particular as regards the nature of this transition.
In order to distinguish between the ordered helical phase at T < T1 and the disordered random-
globule phase at T > T1, one needs to introduce an order parameter. Following Hansmann and
Okamoto [26] we adopt helicity for this purpose. Its definition relies on the observation that,
unlike coil or random-globule states, a helical conformation is characterized by some specific
values of the bond and torsion angles. If we denote by ξ1 the angle between two consecutive
bonds (i, i + 1) and (i + 1, i + 2) and by ξ2 the next angle for monomers i + 1, i + 2 and i + 3,
and if we further denote by ζ the angle between bond (i + 2, i + 3) and the plane formed by
monomers i, i + 1 and i + 2, then we call the quartet of monomers i, i + 1, i + 2 and i + 3 helical
if ξ1, ξ2 = 101 ± 30◦ and ζ = 56 ± 17◦. In this definition of a helical four-monomer segment
the given acceptable deviations of the bond and torsion angles from their ground-state values
account for the thermal fluctuations such that the helix is not considered broken. They were
estimated from the widths of the distribution functions of ξ and ζ at T < T1. We note that
all the results and conclusions obtained in this work remain intact even after making small
changes to the permissible deviations of the ξs and ζ . Helicity is defined as the ratio of the
number of helical four-monomer segments on the chain to the total number of such segments:

h = nh

N − 3
. (3)

Clearly, in disordered conformations at T > T1 the helicity will acquire small values of order
0, while in the ordered phase at T < T1 it will approach unity (in sufficiently long chains). We
also consider the susceptibility χ of the order parameter h defined in a manner that is standard
for response functions:

χ = N〈%h2〉. (4)

Here angular brackets denote the ensemble average. We expect the susceptibility, like the
specific heat, to have maxima at transition points where the structural fluctuations of the
system are significant.

Information contained in molecular dynamics data for helicity and susceptibility can be
used to establish the order of the freezing transition. A problem that emerges in MD studies
of critical phenomena is that continuous and discontinuous phase transitions look alike in
finite-size systems. Thermodynamic quantities expected to be discontinuous at first-order
transitions, such as internal energy, are smooth functions of temperature for the two kinds of
transition. This makes determination of the order of phase transitions from molecular dynamics
ensembles a non-trivial computational problem whose successful solution requires application
of the finite-size scaling theory [27]. According to this theory the maxima of the specific heat
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and susceptibility of finite-size systems containing N particles scale as

Cv(N) ∼ Nα/(dν)

χ(N) ∼ Nγ/(dν)
(5)

where α is the specific heat critical exponent, γ is the susceptibility critical exponent, ν is the
correlation length critical exponent and d is the space dimensionality. It is generally believed
that at first-order transitions the response functions scale as ∼N , i.e. α, γ and dν = 1 [28],
while at discontinuous transitions the critical exponents have non-trivial values [29]. Provided
that the dependence of Cv and χ on the number of particles is available from computer simul-
ations, it is possible to carry out the scaling analysis on the basis of (5) in order to establish
the nature of the transition. Such an analysis has been attempted in [26, 28] for the case of
freezing coil–helix transition in alanine oligomers and in an off-lattice homopolymer model.
Numerical implementation of relations (5) turned out, however, to be extremely sensitive to the
statistical error contained in Cv and χ . A simple analysis of the data provided by Hansmann
and Okamoto in references [26, 30] shows that as little as 10% error of the input quantity Cv

may lead to as much as 100% error in the output critical exponent. Thus it appears that in
order to be successful, this method needs an accurate calculation of the exponents in order to
decide the order of a transition; this, in turn, entails unusually long computer simulations. It is
this computational difficulty which prevented the authors of references [26,30] from reaching
an unambiguous conclusion regarding the order of the helix–coil transition.

Here, for the purpose of determining the order of a freezing transition, we propose
to employ a less computationally demanding strategy based on the analysis of the order
parameter distribution function P(h) at criticality [21, 31]. Intuitively it is understood
that in discontinuous transitions the order parameter distribution function should have two
maxima corresponding to the average values of the order parameter in coexisting phases; in
continuous transitions there is only one maximum, as in this case the difference between the
two phases is smeared out. When one looks at this criterion for the distinction between first-
and second-order transitions from the perspective of the free-energy profile F(h), defined
as F(h) = −kbT ln P(h), the bimodal shape of the order parameter distribution function
transforms into a two-minimum structure of F(h) with each minimum corresponding to each
phase at coexistence. Accordingly, the unimodal shape of P(h) means one minimum for the
free-energy profile.

In figure 3 we present the temperature dependence of the helicity distribution function
P(h) for the 20-monomer chain. One can readily see that at temperatures above freezing,
P(h) has one maximum positioned at small h ∼ 0.2; the content of the helical segments of
the chain is low and is a decreasing function of temperature in this region. As the temperature
goes down, this maximum gradually fades away, giving place to another maximum centred
this time around the large helicity h ∼ 0.7. Clearly, in the ordered phase at low temperatures,
four-monomer segments of the chain are predominantly found in the helical configuration.
The temperature of the crossover from the ordered to the disordered phase can be identified
as the point at which the two maxima of the distribution function have equal height. From
figure 3 we find that the crossover occurs at T = 0.031 which coincides within numerical
error with the temperature of the first maximum of Cv , T1. Thus the structural transition
occurring in the system at T = T1 may be identified as an order–disorder freezing transition
from a random-globule phase to the helical phase. The critical helicity distribution function
for the 20-monomer system is depicted in figure 4. In this figure we also present the data
from our simulations performed for 30- and 40-monomer systems. The reason for this is
as follows. It is understood that owing to finite-size effects the transition temperature Tc of
some thermodynamic system of infinite extent N → ∞ differs from the transition temperature
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Figure 3. The temperature dependence of the helicity distribution function as obtained from NVT

simulations of the 20-monomer polyampholyte. Lines in the graph represent a smooth interpolation
between 17 values of helicity accessible to a chain of 20 units.
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Figure 4. Critical distributions of helicity in 20-, 30- and 40-monomer polyampholytes. In the
30-mer the crossover occurs at T = 0.026 and in the 40-mer at T = 0.021. For information on
how the lines were drawn in this figure, we refer the reader to the caption of figure 3.

Tc(N) observed in a computer model of that system containing N particles. Naturally this
holds true of both first-order and continuous phase transitions. When one is simulating an
N -particle replica at thermodynamic conditions corresponding to the infinite-system critical
point, the finite MD ensemble will find itself in the coexistence region and its critical order
parameter distribution function will have two maxima. It follows, thus, that on extrapolating
MD results to the thermodynamic limit one faces a problem as regards proper identification of
the order of the transition, since a bimodal shape of the distribution functions does not provide
enough evidence for the first-order nature of the transition. A clue as regards how to overcome
this difficulty lies in the investigation of the dependence of the critical distribution function
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on the number of underlying particles N [21]. At critical points the scaled order parameter
distribution function P ∗(h∗) does not change with N . For some systems P ∗(h∗) can even be
calculated analytically provided that the critical exponents are known [32]. Further, in the
coexistence region, where the system undergoes a discontinuous transition, P ∗(h∗) acquires a
more sharply peaked shape, characterized by higher and narrower maxima, as the number of
particles grows. And finally, in the supercritical region the two peaks ofP ∗(h∗)gradually merge
into one maximum with the increase of N . The behaviour of the critical distribution functions
described above was used by Wilding and Bruce to locate very accurately the liquid–vapour
critical point in LJ fluids [21]. Returning to figure 4, we observe that helicity distribution
functions exhibit trends consistent with the attributes of discontinuous transitions: the two
maxima become sharply peaked as the number of simulated monomers grows. We note that,
to accommodate the requirements of the discussion that follows, P(h) in figure 4 is not given
in scaled variables as originally prescribed in [21]. But it is clear from that figure that it is
impossible to change the trend of the functions P(h) with N by a simple scaling operation. In
particular, it is impossible to superimpose P(h) for the 30-mer on that of the 40-mer by simply
multiplying the former by a constant factor. Hence all conclusions drawn on the basis of the
observed N -trends of P(h) remain intact. One can observe in figure 4 that the positions of the
maxima of P(h) corresponding to the helicity of the ordered and disordered phases are shifted
towards 0 and 1 respectively for 30- and 40-monomer systems as compared to the 20-mer. In
the limit of infinite N , one would find a finite jump in helicity at the transition point. All of
the above considerations led us to conclude that the helix freezing transition taking place in
the present model of di-block polyampholytes is of first order.

In figure 5 we show helicity and susceptibility as functions of temperature for all system
sizes studied. The figure shows that the helicity is a monotonically decreasing function of
temperature while the susceptibility has a maximum around the freezing temperature T1. As
the number of chain monomers grows, the susceptibility peak becomes higher and narrower,
while its position is shifted towards low temperatures. At the freezing point the chain spends
equal amounts of time in conformations of ordered and disordered phases, i.e. with low and
high helicity. As a result, the average helicity takes on values around 0.5 at T ∼ T1 as seen
from figure 5. We would like to note here that the numerical data obtained for the 40-monomer
polyampholyte are the least reliable ones, despite a great computational effort that we made to
simulate this system. The 40-mer was simulated in runs of 200 × 106 time steps and the time
spent on this simulation amounted to 60% of the total computational time of this work. The
insufficient statistics for the 40-monomer chain is reflected in figure 5 in the remarkable scatter
of h and χ and the notable deviations of h from its values in 20- and 30-particle ensembles.
Another interesting aspect of the susceptibility is the presence of only one maximum, in contrast
to the case for the specific heat where we saw two maxima. Clearly, the collapse transition at
T = T2 is by no means related to the helix formation in the frozen state.

Now we are in position to sketch a general picture of the basic physical processes, in
particular the sequence of structural transitions, taking place in the single-chain di-block
polyampholyte being studied. At sufficiently high temperatures the monomers have large
enough kinetic energy to be able to approach each other very close. The potential energy
of the system is then dominated by the repulsive soft-core contribution and the chain mostly
populates extended-coil conformations. At T ∼ 2.65 the attractive Coulomb force starts to
take over, giving rise to the zipping transition. The chain is now in the state of the supercoil
whose unit ‘monomers’ are formed by pairs of positive and negative charges, or dipoles. In the
supercoil state the chain’s entropy gain coming from expansion is not balanced by the energy
gain resulting from compaction. As a result, the system remains an extended random coil. At
T > T2 the system is subject to large-scale conformational fluctuations as shown in figure 6
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Figure 5. Helicity (a) and susceptibility (b) of the 20-, 30- and 40-monomer polyampholytes as
obtained from NVT simulations.
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Figure 6. Distribution functions of the bond and torsion angles in the 20-monomer di-block poly-
ampholyte above the collapse temperature at T = 0.172.

which shows the distribution functions of the bond and torsion angles of the 20-monomer
system at T = 0.172. The bond-angle distribution is quite broad with one maximum peaked
around 110◦. At the top it reaches the upper possible limit of the bond angle, 180◦, found in
straight-line configurations of three-monomer segments, while at the bottom the distribution
is limited by angles around 50◦. The lower bound is connected with the effect of the soft-core
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potential which prevents second-neighbour monomers from coming into too close contact. The
torsion-angle distribution looks rather flat over the whole range of angles except for two broad
maxima located symmetrically around 60◦ and 300◦. The symmetry of the positions of the
maxima is brought about by the invariance property of the system Hamiltonian with respect to
the mirror reflection operation �ri → −�ri . It follows, thus, that properly equilibrated di-block
polyampholyte will always have a symmetrical torsion-angle distribution. Values ζ < 180◦

correspond to the right-handed configuration of the ground-state helix, as shown in figure 2,
and values ζ > 180◦ signify left-handed configurations.

Upon further decrease of temperature, the entropic and energetic parts of the free energy
finally balance each other and the polymer collapses at T = T2. This process is accompanied
by a rapid decrease of the overall size of the system (see figure 1(b)). In the collapsed state the
chain is characterized by a still large degree of conformational freedom as illustrated in figure 7
which shows the bond- and torsion-angle distributions at T = 0.054. To a large extent the
situation in the globular state is similar to that found in the coil states in that both distributions
are sufficiently broad. What makes the temperature T = 0.054 differ is the breakdown of
the system’s symmetry. Instead of having two maxima as in the previous figure, the torsion-
angle distribution function now exhibits only one peak which corresponds to the right-handed
helix configuration. One can claim that at T < T2 the system stays in a non-equilibrium
state since every conformation explored by the chain is related by the symmetry operation to
its counterpart, which has the same statistical weight but which has not been visited in the
simulation. In fact, all such pairs of conformations are separated by an insurmountable—on
the present timescale—free-energy barrier at T < T2. Returning to figure 7, we would like
to emphasize the fact that the twist of the ground-state helix is fixed at the collapse stage and
cannot be changed spontaneously below T2.
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Figure 7. As figure 6, but for T = 0.054.

Following further decrease of temperature, the system freezes into the ground-state
helix. The conformation space available to the chain dramatically shrinks to a few helix-like
conformers at T < T1. This is evident from figure 8 which shows the torsion- and bond-angle
distributions at T = 0.011. Both distributions acquire sharply peaked shapes. Clearly, the
chain cannot freely change its shape any longer and it is forced to remain in the vicinity of the
ground state.

Finally in this paper, we would like to draw some parallels between the properties found in
di-block polyampholytes and the statistical physics of unconstrained electrolytes which may
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Figure 8. As figure 6, but for T = 0.011.

help us to better understand the role played by the chain connectivity in structural organization
of polymeric systems. Depending on the applied external temperature, electrolytes can be
found in three obvious phases: the gas phase at T ∼ 1, the liquid phase at T ∼ 0.02
and the solid phase at T < 0.001 [33]. Physical prototypes of all the above phases can
be associated with dilute aqueous solutions of electrolytes, molten alkali halides and ionic
crystals respectively. The mechanism by which electrolytes try to minimize their potential
energy is the well-known screening effect: the particles rearrange themselves into alternating
shells of opposite charges such that the resulting interaction potential between distant particles
becomes effectively short ranged. It is understood that since an important prerequisite for the
screening phenomenon to proceed is translational freedom of the particles, in polyampholytes
the screening may well be hampered by the chain connectivity. The failure of the constrained
system to optimize its electrostatic energy, or frustration, gives rise to a complicated shape of
the potential energy surface with many local minima separated by energy barriers. The barriers
naturally facilitate freezing of the chain: the higher the barrier, the easier it is for the chain to get
trapped into one of the minima. Put another way, frustration caused by the chain connectivity
is expected to raise the freezing temperature of the system. Our results are fully consistent with
this speculation. The constrained polyampholyte studied freezes at temperatures T ∼ 0.01
where ordinary electrolyte would remain in the liquid phase [33]. A similar conclusion about
the implication of the bond-length constraints for the freezing properties of polyampholytes
has also been reached in [34].

4. Conclusions

In this paper we reported on the molecular dynamics simulations of a bead model di-block
polyampholyte. We found that the ground state of the model studied is a double-stranded
helix. The chain on its folding path towards the ground state passes through an intermediate
molten-globule phase. In the intermediate phase the molecule is smaller compared to both
high-temperature and ground-state conformations, and it undergoes considerable structural
fluctuations. Also at the stage of the coil-to-globule transition the twist of the native helix is
fixed. Below the collapse transition the chain cannot spontaneously change its twist.

The transition temperatures of the coil–globule and globule–helix transitions are
observable in the specific heat as two separate maxima. In addition, the freezing transition can
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also be detected as a maximum of susceptibility. Finite-size analysis of the helicity distribution
function at the temperature of freezing clearly demonstrates that the globule–helix transition
is first-order-like.
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